SPARTAN

Author:

Babu Shivnath1,Garofalakis Minos2,Rastogi Rajeev2

Affiliation:

1. Stanford University, Stanford, CA

2. Bell Labs, Lucent Technologies, Murray Hill, NJ

Abstract

While a variety of lossy compression schemes have been developed for certain forms of digital data (e.g., images, audio, video), the area of lossy compression techniques for arbitrary data tables has been left relatively unexplored. Nevertheless, such techniques are clearly motivated by the ever-increasing data collection rates of modern enterprises and the need for effective, guaranteed-quality approximate answers to queries over massive relational data sets.In this paper, we propose SPARTAN, a system that takes advantage of attribute semantics and data-mining models to perform lossy compression of massive data tables. SPARTAN is based on the novel idea of exploiting predictive data correlations and prescribed error-tolerance constraints for individual attributes to construct concise and accurate Classification and Regression Tree (CaRT) models for entire columns of a table. More precisely, SPARTAN selects a certain subset of attributes (referred to as predicted attributes) for which no values are explicitly stored in the compressed table; instead, concise error-constrained CaRTs that predict these values (within the prescribed error tolerances) are maintained. To restrict the huge search space of possible CaRT predictors, SPARTAN uses a Bayesian network structure to guide the selection of CaRT models that minimize the overall storage requirement, based on the prediction and materialization costs for each attribute. SPARTAN 's CaRT-building algorithms employ novel integrated pruning strategies that take advantage of the given error constraints on individual attributes to minimize the computational effort involved. Our experimentation with several real-life data sets offers convincing evidence of the effectiveness of SPARTAN 's model-based approach --- SPARTAN is able to consistently yield substantially better compression ratios than existing semantic or syntactic compression tools (e.g., gzip) while utilizing only small samples of the data for model inference.

Publisher

Association for Computing Machinery (ACM)

Reference21 articles.

1. "NetFlow Services and Applications". Cisco Systems 1999. "NetFlow Services and Applications". Cisco Systems 1999.

2. SPARTAN

3. Bayesian networks for lossless dataset compression

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3