Solvent selection in membrane preparation from polyethylene terephthalate plastic waste: computational and experimental study

Author:

Ali Badrut Tamam Ibnu,Widiastuti NurulORCID,Kusumawati YulyORCID,Ivansyah Atthar LuqmanORCID,Jaafar JuhanaORCID

Abstract

Abstract The selection of the solvent during the membrane preparation process significantly affects the characteristics of the resulting membrane. The large number of organic solvents available for dissolving polymers renders this experimental approach ineffective. A computational approach can select a solvent using the solvation energy value approach. In addition, no organic waste is generated from the computational approach, which is a distinct advantage. A computational approach using the DFT/B3LYP/def2-TZVP RIJCOSX method was used to optimize the structure of polyethylene terephthalate (PET). The PET for the experiment was obtained from the utilization of plastic bottle waste. In addition, a review of the thermodynamics, geometry, HOMO-LUMO orbitals, and vibrational frequencies was conducted to validate the PET molecule against the experimental results. A conductor-like polarizable continuum model was used to determine the best solvent for dissolving the PET plastic waste. The results demonstrated that the Fourier Transform Infra-Red and Fourier Transform Raman spectra obtained from computational calculations were not significantly different from the experimental results. Based on a thermodynamic approach, computationally the Gibbs free energy (−724.723), entropy (0.0428), and enthalpy (−724,723 Kjmol−1 ) values of the PET dimer molecule are not much different from the experimental values (−601, 0.042, and −488 Kjmol−1). The computational approach was successful in selecting solvents that can dissolve PET plastic bottle waste. Phenol solvent has the lowest solvation energy value (−101.879 Kjmol−1) and the highest binding energy (2.4 Kjmol−1) than other solvents. Computational and experimental results demonstrated that the phenol solvent was able to dissolve PET plastic bottle waste better than the other solvents.

Funder

Institut Teknologi Sepuluh Nopember

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3