Interactive real-time articulated figure manipulation using multiple kinematic constraints

Author:

Phillips Cary B.,Zhao Jianmin,Badler Norman I.

Abstract

In this paper, we describe an interactive system for positioning articulated figures which uses a 3D direct manipulation technique to provide input to an inverse kinematics algorithm running in real time. The system allows the user to manipulate highly articulated figures, such as human figure models, by interactively dragging 3D "reach goals." The user may also define multiple "reach constraints" which are enforced during the manipulation. The 3D direct manipulation interface provides a good mechanism for control of the inverse kinematics algorithm and helps it to overcome problems with redundancies and singularities which occur with figures of many degrees of freedom. We use an adaptive technique for evaluating the constraints which allows us to ensure that only a certain user-controllable amount of time will be consumed by the inverse kinematics algorithm at each iteration of the manipulation process. This technique is also sensitive to the time it takes to redraw the screen, so it prevents the frame display rate of the direct manipulation from become too slow for interactive control.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,General Computer Science

Reference10 articles.

1. Articulated Figure Positioning by Multiple Constraints

2. Skitters and jacks

3. {4} James Korien A Geometric Investigation of Reach MIT Press 1985. {4} James Korien A Geometric Investigation of Reach MIT Press 1985.

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Animation;Stepping into Virtual Reality;2023

2. Coordinate Invariant User-Guided Constrained Path Planning with Reactive Rapidly Expanding Plane-Oriented Escaping Trees;2022

3. Kinematics in the metric space;Computers & Graphics;2019-11

4. Computer Animation;Computing Handbook, Third Edition;2014-05-08

5. Research on Computer Modeling of Human Movement;Advanced Materials Research;2014-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3