A Novel Attack on Monochrome and Greyscale Devanagari CAPTCHAs

Author:

Kumar Mohinder1ORCID,Jindal Manish Kumar1,Kumar Munish2ORCID

Affiliation:

1. Panjab University Regional Centre, Sri Muktsar Sahib, Punjab, India

2. Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India

Abstract

The use of computer programs in breaching web site security is common today. CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) and human interaction proofs are the cost-effective solution to these kinds of computer attacks on web sites. These CAPTCHAs are available in many forms, such as those based on text, images and audio. A CAPTCHA must be secure enough that it cannot be broken by a computer program, and it must be usable enough that humans can easily understand it. The most popular is the text-based scheme. Most text-based CAPTCHAs are based on the English language and are not usable by the native people of India. Research has proven that native people are more comfortable with native language–based CAPTCHA. Devanagari-based CAPTCHAs are also available, but the security aspect has not been tested. Unfortunately, English language–based CAPTCHAs are successfully broken. Therefore, it is important to test the security of Devanagari script-based CAPTCHAs. We picked five unique monochrome CAPTCHAs and five unique greyscale CAPTCHAs for testing security. We achieved 88.13% to 97.6% segmentation rates on these schemes and generated six types of features for these segmented characters, such as raw pixels, zoning, projection, Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF) and Oriented Fast and Rotated BRIEF (ORB). For classification, we used three classifiers for comparative analyses. Using k-Nearest Neighbour (k-NN), Support Vector Machine (SVM) and Random Forest, we achieved high recognition on monochrome and greyscale schemes. For monochrome Devanagari CAPTCHAs, the recognition rate of k-NN ranges from 64.78% to 82.39%, SVM ranges from 76.46% to 91.34% and Random Forest ranges from 80.34% to 91.28%. For greyscale Devanagari CAPTCHAs, the recognition rate of k-NN ranges from 67.52% to 85.47%, SVM ranges from 76.9% to 91.71% and Random Forest ranges from 83.07% to 92.13%. We achieved a breaking rate for monochrome schemes of 66% to 85% and for greyscale schemes of 73% to 93%.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3