Affiliation:
1. Panjab University Regional Centre, Sri Muktsar Sahib, Punjab, India
2. Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
Abstract
The use of computer programs in breaching web site security is common today. CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) and human interaction proofs are the cost-effective solution to these kinds of computer attacks on web sites. These CAPTCHAs are available in many forms, such as those based on text, images and audio. A CAPTCHA must be secure enough that it cannot be broken by a computer program, and it must be usable enough that humans can easily understand it. The most popular is the text-based scheme. Most text-based CAPTCHAs are based on the English language and are not usable by the native people of India. Research has proven that native people are more comfortable with native language–based CAPTCHA. Devanagari-based CAPTCHAs are also available, but the security aspect has not been tested. Unfortunately, English language–based CAPTCHAs are successfully broken. Therefore, it is important to test the security of Devanagari script-based CAPTCHAs. We picked five unique monochrome CAPTCHAs and five unique greyscale CAPTCHAs for testing security. We achieved 88.13% to 97.6% segmentation rates on these schemes and generated six types of features for these segmented characters, such as raw pixels, zoning, projection, Scale-Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF) and Oriented Fast and Rotated BRIEF (ORB). For classification, we used three classifiers for comparative analyses. Using k-Nearest Neighbour (k-NN), Support Vector Machine (SVM) and Random Forest, we achieved high recognition on monochrome and greyscale schemes. For monochrome Devanagari CAPTCHAs, the recognition rate of k-NN ranges from 64.78% to 82.39%, SVM ranges from 76.46% to 91.34% and Random Forest ranges from 80.34% to 91.28%. For greyscale Devanagari CAPTCHAs, the recognition rate of k-NN ranges from 67.52% to 85.47%, SVM ranges from 76.9% to 91.71% and Random Forest ranges from 83.07% to 92.13%. We achieved a breaking rate for monochrome schemes of 66% to 85% and for greyscale schemes of 73% to 93%.
Publisher
Association for Computing Machinery (ACM)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献