Resilient overlay networks

Author:

Andersen David1,Balakrishnan Hari1,Kaashoek Frans1,Morris Robert1

Affiliation:

1. MIT Laboratory for Computer Science

Abstract

A Resilient Overlay Network (RON) is an architecture that allows distributed Internet applications to detect and recover from path outages and periods of degraded performance within several seconds, improving over today's wide-area routing protocols that take at least several minutes to recover. A RON is an application-layer overlay on top of the existing Internet routing substrate. The RON nodes monitor the functioning and quality of the Internet paths among themselves, and use this information to decide whether to route packets directly over the Internet or by way of other RON nodes, optimizing application-specific routing metrics.Results from two sets of measurements of a working RON deployed at sites scattered across the Internet demonstrate the benefits of our architecture. For instance, over a 64-hour sampling period in March 2001 across a twelve-node RON, there were 32 significant outages, each lasting over thirty minutes, over the 132 measured paths. RON's routing mechanism was able to detect, recover, and route around all of them, in less than twenty seconds on average, showing that its methods for fault detection and recovery work well at discovering alternate paths in the Internet. Furthermore, RON was able to improve the loss rate, latency, or throughput perceived by data transfers; for example, about 5% of the transfers doubled their TCP throughput and 5% of our transfers saw their loss probability reduced by 0.05. We found that forwarding packets via at most one intermediate RON node is sufficient to overcome faults and improve performance in most cases. These improvements, particularly in the area of fault detection and recovery, demonstrate the benefits of moving some of the control over routing into the hands of end-systems.

Publisher

Association for Computing Machinery (ACM)

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RON‐based cross‐chain routing optimization strategy in metaverse;IET Blockchain;2024-06-10

2. Xaminer: An Internet Cross-Layer Resilience Analysis Tool;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2024-02-16

3. A Quantum Overlay Network for Efficient Entanglement Distribution;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications;2023-05-17

4. A Multipath Data-Scheduling Strategy Based on Path Correlation for Information-Centric Networking;Future Internet;2023-04-11

5. EdgeVPN: Self-organizing layer-2 virtual edge networks;Future Generation Computer Systems;2023-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3