A Multipath Data-Scheduling Strategy Based on Path Correlation for Information-Centric Networking

Author:

Xu Yong12,Ni Hong12,Zhu Xiaoyong12

Affiliation:

1. National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China

Abstract

Information-Centric Networking (ICN) has revolutionized the manner of content acquisition by shifting the communication mode from host-centric to information-centric. Considering the existing, large amount of IP infrastructure in current networks, the new ICN architecture is proposed to be compatible with existing networks in order to reduce deployment cost. However, due to compatibility with IP networks, ICN data packets must be transmitted through the default path provided by IP routing regulations, which also limits the transmission efficiency and reliability of ICN. In order to address this issue, this paper introduces a multipath transmission method applied in ICN which takes full advantage of the functions and characteristics of ICN and builds multiple end-to-end relay paths by using the ICN routers as relay nodes. We then propose a relay-node-selection algorithm based on path correlation to minimize the impact of overlapping links. Moreover, we comprehensively calculate the path state value by combining the round-trip time and packet loss rate and propose a multipath data-scheduling algorithm based on the path state value. Simulation experiments show that the proposed method can maintain high bandwidth utilization while reducing the number of out-of-order packets.

Funder

Chinese Academy of Sciences: SEANET Technology Standardization Research System Development

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3