Assessing Neural Network Scene Classification from Degraded Images

Author:

Tadros Timothy1,Cullen Nicholas C.2,Greene Michelle R.3,Cooper Emily A.4

Affiliation:

1. University of California, San Diego, La Jolla, CA, USA

2. University of Pennsylvania, Philadelphia, PA, USA

3. Bates College, Lewiston, ME, USA

4. University of California, Berkeley, Berkeley, CA, USA

Abstract

Scene recognition is an essential component of both machine and biological vision. Recent advances in computer vision using deep convolutional neural networks (CNNs) have demonstrated impressive sophistication in scene recognition, through training on large datasets of labeled scene images (Zhou et al. 2018, 2014). One criticism of CNN-based approaches is that performance may not generalize well beyond the training image set (Torralba and Efros 2011), and may be hampered by minor image modifications, which in some cases are barely perceptible to the human eye (Goodfellow et al. 2015; Szegedy et al. 2013). While these “adversarial examples” may be unlikely in natural contexts, during many real-world visual tasks scene information can be degraded or limited due to defocus blur, camera motion, sensor noise, or occluding objects. Here, we quantify the impact of several image degradations (some common, and some more exotic) on indoor/outdoor scene classification using CNNs. For comparison, we use human observers as a benchmark, and also evaluate performance against classifiers using limited, manually selected descriptors. While the CNNs outperformed the other classifiers and rivaled human accuracy for intact images, our results show that their classification accuracy is more affected by image degradations than human observers. On a practical level, however, accuracy of the CNNs remained well above chance for a wide range of image manipulations that disrupted both local and global image statistics. We also examine the level of image-by-image agreement with human observers, and find that the CNNs’ agreement with observers varied as a function of the nature of image manipulation. In many cases, this agreement was not substantially different from the level one would expect to observe for two independent classifiers. Together, these results suggest that CNN-based scene classification techniques are relatively robust to several image degradations. However, the pattern of classifications obtained for ambiguous images does not appear to closely reflect the strategies employed by human observers.

Funder

Oculus

Microsoft

Publisher

Association for Computing Machinery (ACM)

Subject

Experimental and Cognitive Psychology,General Computer Science,Theoretical Computer Science

Reference66 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The role of texture summary statistics in material recognition from drawings and photographs;Journal of Vision;2023-12-08

2. Adaptive Multi-Scale Fusion Blind Deblurred Generative Adversarial Network Method for Sharpening Image Data;Drones;2023-01-30

3. Adversarial autoencoder with attention driven loss;APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE’22): Proceedings of the 48th International Conference “Applications of Mathematics in Engineering and Economics”;2023

4. AQuA: A New Image Quality Metric for Optimizing Video Analytics Systems;ACM Transactions on Embedded Computing Systems;2022-11-12

5. Scene Categorization From Indoor-Outdoor Images Using Hybrid MAMF-Based Deep Convolutional Neural Networks;International Journal of Software Innovation;2022-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3