DRIVE: Dockerfile Rule Mining and Violation Detection

Author:

Zhou Yu1ORCID,Zhan Weilin1ORCID,Li Zi1ORCID,Han Tingting2ORCID,Chen Taolue2ORCID,Gall Harald3ORCID

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, China

2. Birkbeck, University of London, UK

3. University of Zurich, Switzerland

Abstract

A Dockerfile defines a set of instructions to build Docker images, which can then be instantiated to support containerized applications. Recent studies have revealed a considerable amount of quality issues with Dockerfiles. In this article, we propose a novel approach, Dockerfiles Rule mIning and Violation dEtection ( DRIVE ), to mine implicit rules and detect potential violations of such rules in Dockerfiles. DRIVE first parses Dockerfiles and transforms them to an intermediate representation. It then leverages an efficient sequential pattern mining algorithm to extract potential patterns. With heuristic-based reduction and moderate human intervention, potential rules are identified, which can then be utilized to detect potential violations of Dockerfiles. DRIVE identifies 34 semantic rules and 19 syntactic rules including 9 new semantic rules that have not been reported elsewhere. Extensive experiments on real-world Dockerfiles demonstrate the efficacy of our approach.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Birkbeck BEI School Project (EFFECT), an oversea grant from the State Key Laboratory of Novel Software Technology, Nanjing University

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Reference49 articles.

1. [n. d.]. Best Practices for Writing Dockerfiles. Retrieved July 22 2022 from https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

2. [n. d.]. Hadolint. Retrieved July 22 2022 from https://github.com/hadolint/hadolint/

3. Matej Artac, Tadej Borovssak, Elisabetta Di Nitto, Michele Guerriero, and Damian Andrew Tamburri. 2017. DevOps: Introducing infrastructure-as-code. In Proceedings of the IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C’17). IEEE, 497–498.

4. An empirical study on self-admitted technical debt in Dockerfiles

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3