An empirical study on self-admitted technical debt in Dockerfiles

Author:

Azuma Hideaki,Matsumoto ShinsukeORCID,Kamei Yasutaka,Kusumoto Shinji

Abstract

AbstractIn software development, ad hoc solutions that are intentionally implemented by developers are called self-admitted technical debt (SATD). Because the existence of SATD spreads poor implementations, it is necessary to remove it as soon as possible. Meanwhile, container virtualization has been attracting attention in recent years as a technology to support infrastructure such as servers. Currently, Docker is the de facto standard for container virtualization. In Docker, a file describing how to build a container (Dockerfile) is a set of procedural instructions; thus, it can be considered as a kind of source code. Moreover, because Docker is a relatively new technology, there are few developers who have accumulated good or bad practices for building Docker container. Hence, it is likely that Dockerfiles contain many SATDs, as is the case with general programming language source code analyzed in previous SATD studies. The goal of this paper is to categorize SATDs in Dockerfiles and to share knowledge with developers and researchers. To achieve this goal, we conducted a manual classification for SATDs in Dockerfile. We found that about 3.0% of the comments in Dockerfile are SATD. In addition, we have classified SATDs into five classes and eleven subclasses. Among them, there are some SATDs specific to Docker, such as SATDs for version fixing and for integrity check. The three most common classes of SATD were related to lowering maintainability, testing, and defects.

Funder

japan society for the promotion of science

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fixing Dockerfile smells: an empirical study;Empirical Software Engineering;2024-07-06

2. Are Prompt Engineering and TODO Comments Friends or Foes? An Evaluation on GitHub Copilot;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

3. Self-Admitted Technical Debts Identification: How Far Are We?;2024 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2024-03-12

4. Why and how bug blocking relations are breakable: An empirical study on breakable blocking bugs;Information and Software Technology;2024-02

5. Increasing Productivity in Software Development Through the Use of Docker Technology;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3