The Minimal Failure-Causing Schema of Combinatorial Testing

Author:

Nie Changhai1,Leung Hareton2

Affiliation:

1. Nanjing University

2. Hong Kong Polytechnic University

Abstract

Combinatorial Testing (CT) involves the design of a small test suite to cover the parameter value combinations so as to detect failures triggered by the interactions among these parameters. To make full use of CT and to extend its advantages, this article first gives a model of CT and then presents a theory of the Minimal Failure-causing Schema (MFS), including the concept of the MFS, proof of its existence, some of its properties, and a method of finding the MFS. Then we propose a methodology for CT based on this MFS theory and the existing research. Our MFS-based methodology emphasizes that CT should work on accurate testing requirements, and has the following advantages: 1) Detect failure to the greatest degree with the least cost. 2) Effectiveness is improved by emphasizing mining of the information in software and making full use of the information gained from test design and execution. 3) Determine the root causes of failures and reveal related faults near the exposed ones. 4) Provide a foundation and model for regression testing and software quality evaluation of CT. A case study is presented to illustrate the MFS-based CT methodology, and an empirical study on a real software developed by us shows that the MFS really exists and the methodology based on MFS can considerably improve CT.

Funder

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two improving approaches for faulty interaction localization using logistic regression analysis;Software Quality Journal;2024-06-07

2. Variable-strength combinatorial testing of exported activities based on misexposure prediction;Journal of Systems and Software;2023-10

3. Fault localization for intelligent automation systems;2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA);2023-09-12

4. Software Fault Localization: an Overview of Research, Techniques, and Tools;Handbook of Software Fault Localization;2023-04-20

5. Applying CT-FLA for AEB Function Testing: A Virtual Driving Case Study;2023 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW);2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3