Understanding and Alleviating the Impact of the Flash Address Translation on Solid State Devices

Author:

Zhou You1,Wu Fei1,Huang Ping2,He Xubin3,Xie Changsheng1,Zhou Jian1

Affiliation:

1. Huazhong University of Science and Technology, Wuhan, China

2. Temple University, Philadelphia, PA

3. Temple University and Virginia Commonwealth University, Philadelphia, PA

Abstract

Flash-based solid state devices (SSDs) have been widely employed in consumer and enterprise storage systems. However, the increasing SSD capacity imposes great pressure on performing efficient logical to physical address translation in a page-level flash translation layer (FTL). Existing schemes usually employ a built-in RAM to store mapping information, called mapping cache , to speed up the address translation. Since only a fraction of the mapping table can be cached due to limited cache space, a large number of extra flash accesses are required for cache management and garbage collection, degrading the performance and lifetime of an SSD. In this paper, we first apply analytical models to investigate the key factors that incur extra flash accesses during address translation. Then, we propose a novel page-level FTL with an efficient translation page-level caching mechanism, named TPFTL , to minimize the extra flash accesses. TPFTL employs a two-level least recently used (LRU) list with space-efficient optimizations to organize cached mapping entries. Inspired by the models, we further design a workload-adaptive loading policy combined with an efficient replacement policy to increase the cache hit rate and reduce the writebacks of replaced dirty entries. Finally, we evaluate TPFTL using extensive trace-driven simulations. Our evaluation results show that compared to the state-of-the-art FTLs, TPFTL significantly reduces the extra operations caused by address translation, achieving reductions on system response time and write amplification by up to 27.1% and 32.2%, respectively.

Funder

U.S. National Science Foundation

Key Laboratory of Data Storage System

Ministry of Education of China

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture

Reference41 articles.

1. Client-side Flash Caching for Cloud Systems

2. Ken Bates and Bruce McNutt. 2013. Traces from UMass Trace Repository. Retrieved from http://traces.cs.umass.edu/index.php/Storage/Storage. Ken Bates and Bruce McNutt. 2013. Traces from UMass Trace Repository. Retrieved from http://traces.cs.umass.edu/index.php/Storage/Storage.

3. System Software for Flash Memory: A Survey

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3