Crowdsourcing Human Annotation on Web Page Structure

Author:

Han Shuguang1,Dai Peng2,Paritosh Praveen2,Huynh David2

Affiliation:

1. University of Pittsburgh, Pittsburgh, PA

2. Google

Abstract

Parsing the semantic structure of a web page is a key component of web information extraction. Successful extraction algorithms usually require large-scale training and evaluation datasets, which are difficult to acquire. Recently, crowdsourcing has proven to be an effective method of collecting large-scale training data in domains that do not require much domain knowledge. For more complex domains, researchers have proposed sophisticated quality control mechanisms to replicate tasks in parallel or sequential ways and then aggregate responses from multiple workers. Conventional annotation integration methods often put more trust in the workers with high historical performance; thus, they are called performance-based methods. Recently, Rzeszotarski and Kittur have demonstrated that behavioral features are also highly correlated with annotation quality in several crowdsourcing applications. In this article, we present a new crowdsourcing system, called Wernicke, to provide annotations for web information extraction. Wernicke collects a wide set of behavioral features and, based on these features, predicts annotation quality for a challenging task domain: annotating web page structure. We evaluate the effectiveness of quality control using behavioral features through a case study where 32 workers annotate 200 Q&A web pages from five popular websites. In doing so, we discover several things: (1) Many behavioral features are significant predictors for crowdsourcing quality. (2) The behavioral-feature-based method outperforms performance-based methods in recall prediction, while performing equally with precision prediction. In addition, using behavioral features is less vulnerable to the cold-start problem, and the corresponding prediction model is more generalizable for predicting recall than precision for cross-website quality analysis. (3) One can effectively combine workers’ behavioral information and historical performance information to further reduce prediction errors.

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Theoretical Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application Research of Dynamic Load Test Based on Sensor Technology in Bridge Detection and Evaluation;2023 Third International Conference on Digital Data Processing (DDP);2023-11-27

2. A Model for Cognitive Personalization of Microtask Design;Sensors;2023-03-29

3. A Misreport- and Collusion-Proof Crowdsourcing Mechanism Without Quality Verification;IEEE Transactions on Mobile Computing;2022-09-01

4. A Survey on Task Assignment in Crowdsourcing;ACM Computing Surveys;2022-02-03

5. Quality Control in Crowdsourcing based on Fine-Grained Behavioral Features;Proceedings of the ACM on Human-Computer Interaction;2021-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3