Optimizing software runtime systems for speculative parallelization

Author:

Yiapanis Paraskevas1,Rosas-Ham Demian1,Brown Gavin1,Luján Mikel1

Affiliation:

1. University of Manchester, Manchester, UK

Abstract

Thread-Level Speculation (TLS) overcomes limitations intrinsic with conservative compile-time auto-parallelizing tools by extracting parallel threads optimistically and only ensuring absence of data dependence violations at runtime. A significant barrier for adopting TLS (implemented in software) is the overheads associated with maintaining speculative state. Based on previous TLS limit studies, we observe that on future multicore systems we will likely have more cores idle than those which traditional TLS would be able to harness. This implies that a TLS system should focus on optimizing for small number of cores and find efficient ways to take advantage of the idle cores. Furthermore, research on optimistic systems has covered two important implementation design points: eager vs. lazy version management. With this knowledge, we propose new simple and effective techniques to reduce the execution time overheads for both of these design points. This article describes a novel compact version management data structure optimized for space overhead when using a small number of TLS threads. Furthermore, we describe two novel software runtime parallelization systems that utilize this compact data structure. The first software TLS system, MiniTLS, relies on eager memory data management (in-place updates) and, thus, when a misspeculation occurs a rollback process is required. MiniTLS takes advantage of the novel compact version management representation to parallelize the rollback process and is able to recover from misspeculation faster than existing software eager TLS systems. The second one, Lector (Lazy inspECTOR) is based on lazy version management. Since we have idle cores, the question is whether we can create “helper” tasks to determine whether speculation is actually needed without stopping or damaging the speculative execution. In Lector, for each conventional TLS thread running speculatively with lazy version management, there is associated with it a lightweight inspector . The inspector threads execute alongside to verify quickly whether data dependencies will occur. Inspector threads are generated by standard techniques for inspector/executor parallelization. We have applied both TLS systems to seven Java sequential benchmarks, including three benchmarks from SPECjvm2008. Two out of the seven benchmarks exhibit misspeculations. MiniTLS experiments report average speedups of 1.8x for 4 threads increasing close to 7x speedups with 32 threads. Facilitated by our novel compact representation, MiniTLS reduces the space overhead over state-of-the-art software TLS systems between 96% on 2 threads and 40% on 32 threads. The experiments for Lector, report average speedups of 1.7x for 2 threads (that is 1 TLS + 1 Inspector threads) increasing close to 8.2x speedups with 32 threads (16 + 16 threads). Compared to a well established software TLS baseline, Lector performs on average 1.7x faster for 32 threads and in no case ( x TLS + x Inspector threads) Lector delivers worse performance than the baseline TLS with the equivalent number of TLS threads (i.e. x TLS threads) nor doubling the equivalent number of TLS threads (i.e., x + x TLS threads).

Funder

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference39 articles.

1. Ali-Reza Adl-Tabatabai Shpeisman T. and Gottschlich J. 2012. Draft specification of transactional language constructs for C++. Tech. rep. Transactional Memory Specification Drafting Group. Ali-Reza Adl-Tabatabai Shpeisman T. and Gottschlich J. 2012. Draft specification of transactional language constructs for C++. Tech. rep. Transactional Memory Specification Drafting Group.

2. The Jrpm system for dynamically parallelizing Java programs

3. Copy or Discard execution model for speculative parallelization on multicores

4. Design space exploration of a software speculative parallelization scheme

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3