eDiaPredict: An Ensemble-based Framework for Diabetes Prediction

Author:

Singh Ashima1,Dhillon Arwinder1,Kumar Neeraj1ORCID,Hossain M. Shamim2ORCID,Muhammad Ghulam3,Kumar Manoj4

Affiliation:

1. Thapar University, Patiala, Pb, India

2. Research Chair of Pervasive and Mobile Computing, and Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia

3. Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Saudi Arabia

4. SMVD University, Katra, India

Abstract

Medical systems incorporate modern computational intelligence in healthcare. Machine learning techniques are applied to predict the onset and reoccurrence of the disease, identify biomarkers for survivability analysis depending upon certain health conditions of the patient. Early prediction of diseases like diabetes is essential as the number of diabetic patients of all age groups is increasing rapidly. To identify underlying reasons for the onset of diabetes in its early stage has become a challenging task for medical practitioners. Continuously increasing diabetic patient data has necessitated for the applications of efficient machine learning algorithms, which learns from the trends of the underlying data and recognizes the critical conditions in patients. In this article, an ensemble-based framework named e DiaPredict is proposed. It uses ensemble modeling, which includes an ensemble of different machine learning algorithms comprising XGBoost, Random Forest, Support Vector Machine, Neural Network, and Decision tree to predict diabetes status among patients. The performance of eDiaPredict has been evaluated using various performance parameters like accuracy, sensitivity, specificity, Gini Index, precision, area under curve, area under convex hull, minimum error rate, and minimum weighted coefficient. The effectiveness of the proposed approach is shown by its application on the PIMA Indian diabetes dataset wherein an accuracy of 95% is achieved.

Funder

Vice Deanship of Scientific Research Chairs: Chair of Pervasive and Mobile Computing

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference55 articles.

1. Classification of diabetes disease using support vectormachine;Jegan Chitra;Int. J. Eng. Res. Appl.,2018

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3