Fault Monitoring with Sequential Matrix Factorization

Author:

Feng Dawei1,Germain Cecile2

Affiliation:

1. National University of Defense Technology, Université Paris Sud, INRIA and CNRS, Changsha, China

2. Université Paris Sud, INRIA and CNRS, Orsay Cedex

Abstract

For real-world distributed systems, the knowledge component at the core of the MAPE-K loop has to be inferred, as it cannot be realistically assumed to be defined a priori. Accordingly, this paper considers fault monitoring as a latent factors discovery problem. In the context of end-to-end probing, the goal is to devise an efficient sampling policy that makes the best use of a constrained sampling budget. Previous work addresses fault monitoring in a collaborative prediction framework, where the information is a snapshot of the probes outcomes. Here, we take into account the fact that the system dynamically evolves at various time scales. We propose and evaluate Sequential Matrix Factorization (SMF) that exploits both the recent advances in matrix factorization for the instantaneous information and a new sampling heuristics based on historical information. The effectiveness of the SMF approach is exemplified on datasets of increasing difficulty and compared with state of the art history-based or snapshot-based methods. In all cases, strong adaptivity under the specific flavor of active learning is required to unleash the full potential of coupling the most confident and the most uncertain sampling heuristics, which is the cornerstone of SMF.

Funder

Pôle de Compétitivité Systematic

Chinese Scholarship Council

The European Infrastructure Project EGI-InsPIRE

French cooperative project TIMCO

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Reference43 articles.

1. Scalable tensor factorizations for incomplete data

2. AliEn: ALICE environment on the GRID

3. Using magpie for request extraction and workload modelling;Barham Paul;OSDI,2004

4. CSDP, AC library for semidefinite programming;Borchers Brian;Optimization Methods and Software,1999

5. PARAFAC. Tutorial and applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3