How do you compute the midpoint of an interval?

Author:

Goualard Frédéric1

Affiliation:

1. CNRS, LINA, UMR 6241

Abstract

The algorithm that computes the midpoint of an interval with floating-point bounds requires some careful devising to handle all possible inputs correctly. We review several implementations from prominent C/C++ interval arithmetic packages and analyze their potential failure to deliver the expected results. We then show how to amend them to avoid common pitfalls. The results presented are also relevant to noninterval arithmetic computation such as the implementation of bisection methods. Enough background on IEEE 754 floating-point arithmetic is provided for this article to serve as a practical introduction to the analysis of floating-point computation.

Funder

Indo-French Centre for the Promotion of Advanced Research

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference27 articles.

1. G. E. Alefeld and J. Herzberger. 1983. Introduction to Interval Computations. Academic Press. G. E. Alefeld and J. Herzberger. 1983. Introduction to Interval Computations. Academic Press.

2. The design of the Boost interval arithmetic library

3. G. Chabert I. Araya B. Neveu L. Jaulin G. Trombettoni and A. Baire. 2012. The IBEX constraint solver. http://www.emn.fr/z-info/ibex/. G. Chabert I. Araya B. Neveu L. Jaulin G. Trombettoni and A. Baire. 2012. The IBEX constraint solver. http://www.emn.fr/z-info/ibex/.

4. Pitfalls in Computation, or Why a Math Book isn't Enough

5. What every computer scientist should know about floating-point arithmetic

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A framework to test interval arithmetic libraries and their IEEE 1788‐2015 compliance;Concurrency and Computation: Practice and Experience;2023-08-31

2. Floating-point arithmetic;Acta Numerica;2023-05

3. Testing Interval Arithmetic Libraries, Including Their IEEE-1788 Compliance;Parallel Processing and Applied Mathematics;2023

4. A standard branch-and-bound approach for nonlinear semi-infinite problems;European Journal of Operational Research;2020-04

5. Rigorous Estimation of Floating-Point Round-Off Errors with Symbolic Taylor Expansions;ACM Transactions on Programming Languages and Systems;2019-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3