Profiling a warehouse-scale computer

Author:

Kanev Svilen1,Darago Juan Pablo2,Hazelwood Kim3,Ranganathan Parthasarathy4,Moseley Tipp4,Wei Gu-Yeon1,Brooks David1

Affiliation:

1. Harvard University

2. Universidad de Buenos Aires

3. Yahoo Labs

4. Google

Abstract

With the increasing prevalence of warehouse-scale (WSC) and cloud computing, understanding the interactions of server applications with the underlying microarchitecture becomes ever more important in order to extract maximum performance out of server hardware. To aid such understanding, this paper presents a detailed microarchitectural analysis of live datacenter jobs, measured on more than 20,000 Google machines over a three year period, and comprising thousands of different applications. We first find that WSC workloads are extremely diverse, breeding the need for architectures that can tolerate application variability without performance loss. However, some patterns emerge, offering opportunities for co-optimization of hardware and software. For example, we identify common building blocks in the lower levels of the software stack. This "datacenter tax" can comprise nearly 30% of cycles across jobs running in the fleet, which makes its constituents prime candidates for hardware specialization in future server systems-on-chips. We also uncover opportunities for classic microarchitectural optimizations for server processors, especially in the cache hierarchy. Typical workloads place significant stress on instruction caches and prefer memory latency over bandwidth. They also stall cores often, but compute heavily in bursts. These observations motivate several interesting directions for future warehouse-scale computers.

Publisher

Association for Computing Machinery (ACM)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simultaneous Many-Row Activation in Off-the-Shelf DRAM Chips: Experimental Characterization and Analysis;2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN);2024-06-24

2. Data Flow Architectures for Data Processing on Modern Hardware;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

3. Functionally-Complete Boolean Logic in Real DRAM Chips: Experimental Characterization and Analysis;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

4. MIMDRAM: An End-to-End Processing-Using-DRAM System for High-Throughput, Energy-Efficient and Programmer-Transparent Multiple-Instruction Multiple-Data Computing;2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2024-03-02

5. Optimizing the Training of Co-Located Deep Learning Models Using Cache-Aware Staggering;2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC);2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3