rkHit: Representative Query with Uncertain Preference

Author:

Xiao Xingxing1ORCID,Li Jianzhong2ORCID

Affiliation:

1. Harbin Institute of Technology & Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Harbin, Heilongjiang, China

2. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China

Abstract

A top-k query retrieves the k tuples with highest scores according to a user preference, defined as a scoring function. It is difficult for a user to precisely specify the scoring function. Instead, obtaining the distribution on scoring functions, i.e., the preference distribution, has been extensively explored in many fields. Motivated by this, we introduce the uniform (r,k)-hit (UrkHit) problem. Given a preference distribution, UrkHit aims to select a representative set of r tuples to maximize the probability of containing a tuple attractive to the user. We say a tuple attracts a user, if it is a top-k tuple for the scoring function adopted by the user. Further, we generalize UrkHit and propose the (r,k)-hit (rkHit) problem with an additional penalty function to model the user satisfaction with the tuple ranked i-th. rkHit aims to maximize the expected user satisfaction with the representative set. In 2D space, we design an exact algorithm 2DH for rkHit, indicating rkHit is in P for d=2. We show that rkHit is NP-hard when d\ge3. In 3D space, assuming a uniform preference distribution, we propose a (1-1/e)-approximation algorithm 3DH based on space partitioning. In addition, we propose an approximate algorithm MDH suitable for any dimension and distribution, which creatively combines the ideas of sampling and clustering. It relaxes the approximation guarantee slightly. Comprehensive experiments demonstrate the efficiency and effectiveness of our algorithms.

Funder

the National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Reference58 articles.

1. Pankaj K. Agarwal , Nirman Kumar , Stavros Sintos , and Subhash Suri . 2017 . Efficient Algorithms for k-Regret Minimizing Sets . In 16th International Symposium on Experimental Algorithms (SEA 2017) (Leibniz International Proceedings in Informatics (LIPIcs) , Vol. 75). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1--7: 23 . Pankaj K. Agarwal, Nirman Kumar, Stavros Sintos, and Subhash Suri. 2017. Efficient Algorithms for k-Regret Minimizing Sets. In 16th International Symposium on Experimental Algorithms (SEA 2017) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 75). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 7:1--7:23.

2. Pankaj K. Agarwal and Micha Sharir . 2000 . Arrangements and Their Applications. In Handbook of Computational Geometry. North-Holland, Amsterdam , 49--119. Pankaj K. Agarwal and Micha Sharir. 2000. Arrangements and Their Applications. In Handbook of Computational Geometry. North-Holland, Amsterdam, 49--119.

3. On Finding Rank Regret Representatives

4. On obtaining stable rankings

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3