Affiliation:
1. University of Michigan
2. University of Massachusetts Amherst
3. New York University
Abstract
Decision making is challenging when there is more than one criterion to consider. In such cases, it is common to assign a goodness score to each item as a weighted sum of its attribute values and rank them accordingly. Clearly, the ranking obtained depends on the weights used for this summation. Ideally, one would want the ranked order not to change if the weights are changed slightly. We call this property
stability
of the ranking. A consumer of a ranked list may trust the ranking more if it has high stability. A producer of a ranked list prefers to choose weights that result in a stable ranking, both to earn the trust of potential consumers and because a stable ranking is intrinsically likely to be more meaningful.
In this paper, we develop a framework that can be used to assess the stability of a provided ranking and to obtain a stable ranking within an "acceptable" range of weight values (called "the region of interest"). We address the case where the user cares about the rank order of the entire set of items, and also the case where the user cares only about the top-
k
items. Using a geometric interpretation, we propose algorithms that produce stable rankings. In addition to theoretical analyses, we conduct extensive experiments on real datasets that validate our proposal.
Subject
General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献