A Reconfigurable Architecture with Sequential Logic-Based Stochastic Computing

Author:

Najafi M. Hassan1ORCID,Li Peng2,Lilja David J.1,Qian Weikang3,Bazargan Kia1,Riedel Marc1

Affiliation:

1. University of Minnesota, Minneapolis, MN

2. Intel Corporation, Hillsboro, OR

3. University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai, China

Abstract

Computations based on stochastic bit streams have several advantages compared to deterministic binary radix computations, including low power consumption, low hardware cost, high fault tolerance, and skew tolerance. To take advantage of this computing technique, previous work proposed a combinational logic-based reconfigurable architecture to perform complex arithmetic operations on stochastic streams of bits. The long execution time and the cost of converting between binary and stochastic representations, however, make the stochastic architectures less energy efficient than the deterministic binary implementations. This article introduces a methodology for synthesizing a given target function stochastically using finite-state machines (FSMs), and enhances and extends the reconfigurable architecture using sequential logic. Compared to the previous approach, the proposed reconfigurable architecture can save hardware area and energy consumption by up to 30% and 40%, respectively, while achieving a higher processing speed. Both stochastic reconfigurable architectures are much more tolerant of soft errors (bit flips) than the deterministic binary radix implementations, and their fault tolerance scales gracefully to very large numbers of errors.

Funder

National Science Foundation

National Natural Science Foundation of China

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Reference36 articles.

1. Survey of Stochastic Computing

2. Stochastic circuits for real-time image-processing applications

3. A. Ardakani F. Leduc-Primeau N. Onizawa T. Hanyu and W. J. Gross. 2015. VLSI Implementation of deep neural network using integral stochastic computing. CoRR abs/1509.08972 (2015). http://arxiv.org/abs/1509.08972 A. Ardakani F. Leduc-Primeau N. Onizawa T. Hanyu and W. J. Gross. 2015. VLSI Implementation of deep neural network using integral stochastic computing. CoRR abs/1509.08972 (2015). http://arxiv.org/abs/1509.08972

4. Stochastic neural computation. I. Computational elements

5. Stochastic neural computation. II. Soft competitive learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3