Accuracy Analysis on Design of Stochastic Computing in Arithmetic Components and Combinational Circuit

Author:

Ashok P.1ORCID,Bala Tripura Sundari B.1

Affiliation:

1. Department of Electronics and Communication Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India

Abstract

Stochastic circuits are used in applications that require low area and power consumption. The computing performed using these circuits is referred to as Stochastic computing (SC). The arithmetic operations in this computing can be realized using minimum logic circuits. The SC system allows a tradeoff of computational accuracy and area; thereby, the challenge in SC is improving the accuracy. The accuracy depends on the SC system’s stochastic number generator (SNG) part. SNGs provide the appropriate stochastic input required for stochastic computation. Hence we explore the accuracy in SC for various arithmetic operations performed using stochastic computing with the help of logic circuits. The contributions in this paper are; first, we have performed stochastic computing for arithmetic components using two different SNGs. The SNGs considered are Linear Feed-back Shift Register (LFSR) -based traditional stochastic number generators and S-box-based stochastic number generators. Second, the arithmetic components are implemented in a combinational circuit for algebraic expression in the stochastic domain using two different SNGs. Third, computational analysis for stochastic arithmetic components and the stochastic algebraic equation has been conducted. Finally, accuracy analysis and measurement are performed between LFSR-based computation and S-box-based computation. The novel aspect of this work is the use of S-box-based SNG in the development of stochastic computing in arithmetic components. Also, the implementation of stochastic computing in the combinational circuit using the developed basic arithmetic components, and exploration of accuracy with respect to stochastic number generators used is presented.

Publisher

MDPI AG

Subject

Applied Mathematics,Modeling and Simulation,General Computer Science,Theoretical Computer Science

Reference35 articles.

1. A survey of stochastic computing neural networks for machine learning applications;Liu;IEEE Trans. Neural Netw. Learn. Syst.,2020

2. Gaines, B.R. (2019). Stochastic Computing: Techniques and Applications, Springer.

3. Winstead, C. (2019). Stochastic Computing: Techniques and Applications, Springer.

4. High level synthesis for retiming stochastic VLSI signal processing architectures;Krishnapriya;Procedia Comput. Sci.,2019

5. Stochastic computing in convolutional neural network implementation: A review;Lee;PeerJ Comput. Sci.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3