Resource-demand Estimation for Edge Tensor Processing Units

Author:

Herzog Benedict1ORCID,Reif Stefan2,Hemp Judith2,Hönig Timo1,Schröder-Preikschat Wolfgang2

Affiliation:

1. Ruhr-Universität Bochum (RUB), Germany

2. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Abstract

Machine learning has shown tremendous success in a large variety of applications. The evolution of machine-learning applications from cloud-based systems to mobile and embedded devices has shifted the focus from only quality-related aspects towards the resource demand of machine learning. For embedded systems, dedicated accelerator hardware promises the energy-efficient execution of neural network inferences. Their precise resource demand in terms of execution time and power demand, however, is undocumented. Developers, therefore, face the challenge to fine-tune their neural networks such that their resource demand matches the available budgets. This article presents Precious , a comprehensive approach to estimate the resource demand of an embedded neural network accelerator. We generate randomised neural networks, analyse them statically, execute them on an embedded accelerator while measuring their actual power draw and execution time, and train estimators that map the statically analysed neural network properties to the measured resource demand. In addition, this article provides an in-depth analysis of the neural networks’ resource demands and the responsible network properties. We demonstrate that the estimation error of Precious can be below 1.5% for both power draw and execution time. Furthermore, we discuss what estimator accuracy is practically achievable and how much effort is required to achieve sufficient accuracy.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference62 articles.

1. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th Symposium on Operating Systems Design and Implementation (OSDI’16). USENIX, 265–283.

2. Low-Power Computer Vision: Status, Challenges, and Opportunities

3. Structured Pruning of Deep Convolutional Neural Networks

4. Random search for hyper-parameter optimization;Bergstra James;J. Mach. Learn. Res.,2012

5. Bfloat16 Processing for Neural Networks

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3