Structured Pruning of Deep Convolutional Neural Networks

Author:

Anwar Sajid1,Hwang Kyuyeon1,Sung Wonyong1

Affiliation:

1. Seoul National University, Republic of Korea, Seoul, Korea

Abstract

Real-time application of deep learning algorithms is often hindered by high computational complexity and frequent memory accesses. Network pruning is a promising technique to solve this problem. However, pruning usually results in irregular network connections that not only demand extra representation efforts but also do not fit well on parallel computation. We introduce structured sparsity at various scales for convolutional neural networks: feature map-wise, kernel-wise, and intra-kernel strided sparsity. This structured sparsity is very advantageous for direct computational resource savings on embedded computers, in parallel computing environments, and in hardware-based systems. To decide the importance of network connections and paths, the proposed method uses a particle filtering approach. The importance weight of each particle is assigned by assessing the misclassification rate with a corresponding connectivity pattern. The pruned network is retrained to compensate for the losses due to pruning. While implementing convolutions as matrix products, we particularly show that intra-kernel strided sparsity with a simple constraint can significantly reduce the size of the kernel and feature map tensors. The proposed work shows that when pruning granularities are applied in combination, we can prune the CIFAR-10 network by more than 70% with less than a 1% loss in accuracy.

Funder

National Research Foundation of Korea

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Software

Cited by 403 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3