A final reconstruction approach for a unified global illumination algorithm

Author:

Granier Xavier1,Drettakis George2

Affiliation:

1. IMAGER/University of British Columbia (Canada) and REVES/INRIA-Sophia Antipolis (France)

2. REVES/INRIA-Sophia Antipolis (France)

Abstract

In the past twenty years, many algorithms have been proposed to compute global illumination in synthetic scenes. Typically, such approaches can deal with specific lighting configurations, but often have difficulties with others. In this article, we present a final reconstruction step for a novel unified approach to global illumination that automatically detects different types of light transfer and uses the appropriate method in a closely-integrated manner. With our approach, we can deal with difficult lighting configurations such as indirect nondiffuse illumination. The first step of this algorithm consists in a view-independent solution based on hierarchical radiosity with clustering, integrated with particle tracing. This first pass results in solutions containing directional effects such as caustics, which can be interactively rendered. The second step consists of a view-dependent final reconstruction that uses all existing information to compute higher quality, ray-traced images.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference45 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A highlight effects generation model for translucent materials perception based on directional subsurface scattering;Journal of Intelligent & Fuzzy Systems;2021-04-12

2. Temporal Radiance Caching;IEEE Transactions on Visualization and Computer Graphics;2007-09

3. Temporally Coherent Irradiance Caching for High Quality Animation Rendering;Computer Graphics Forum;2005-09

4. Radiance Caching for Efficient Global Illumination Computation;IEEE Transactions on Visualization and Computer Graphics;2005-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3