Implementation of automatic differentiation tools

Author:

Bischof Christian H.1,Hovland Paul D.2,Norris Boyana2

Affiliation:

1. Aachen University of Technology, Seffenter Weg 23 52074 Aachen, Germany

2. Argonne National Laboratory, Argonne, IL

Abstract

Automatic differentiation is a semantic transformation that applies the rules of differential calculus to source code. It thus transforms a computer program that computes a mathematical function into a program that computes the function and its derivatives. Derivatives play an important role in a wide variety of scientific computing applications, including optimization, solution of nonlinear equations, sensitivity analysis, and nonlinear inverse problems. We describe a simple component architecture for developing tools for automatic differentiation and other mathematically oriented semantic transformations of scientific software. This architecture consists of a compiler-based, language-specific front-end for source transformation, loosely coupled with one or more language-independent "plug-in" transformation modules. The coupling mechanism between the front-end and transformation modules is provided by the XML Abstract Interface Form (XAIF). XAIF provides an abstract, language-independent representation of language constructs common in imperative languages, such as C and Fortran. We describe the use of this architecture in constructing tools for automatic differentiation of Fortran 77 and ANSI C, and we discuss how access to compiler optimization techniques can enable more efficient derivative augmentation.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference28 articles.

1. Algorithms and design for a second-order automatic differentiation module

2. AIF Developer's Page. www-unix.mcs.anl.gov/autodiff/AIF. AIF Developer's Page. www-unix.mcs.anl.gov/autodiff/AIF.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient GPU Implementation of Automatic Differentiation for Computational Fluid Dynamics;2023 IEEE 30th International Conference on High Performance Computing, Data, and Analytics (HiPC);2023-12-18

2. A Simple and Efficient Tensor Calculus for Machine Learning;Fundamenta Informaticae;2020-12-18

3. A usability case study of algorithmic differentiation tools on the ISSM ice sheet model;Optimization Methods and Software;2017-11-08

4. Clad — Automatic Differentiation Using Clang and LLVM;Journal of Physics: Conference Series;2015-05-22

5. Data Assimilation Methods for Land Surface Variable Estimation;Advances in Land Remote Sensing;2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3