Affiliation:
1. Friedrich-Schiller-Universität Jena, Faculty of Mathematics and Computer Science, Ernst-Abbe-Platz 2, 07743 Jena, Germany. soeren.laue@uni-jena.de, matthias.mitterreiter@uni-jena.de, joachim.giesen@uni-jena.de
Abstract
Computing derivatives of tensor expressions, also known as tensor calculus, is a fundamental task in machine learning. A key concern is the efficiency of evaluating the expressions and their derivatives that hinges on the representation of these expressions. Recently, an algorithm for computing higher order derivatives of tensor expressions like Jacobians or Hessians has been introduced that is a few orders of magnitude faster than previous state-of-the-art approaches. Unfortunately, the approach is based on Ricci notation and hence cannot be incorporated into automatic differentiation frameworks from deep learning like TensorFlow, PyTorch, autograd, or JAX that use the simpler Einstein notation. This leaves two options, to either change the underlying tensor representation in these frameworks or to develop a new, provably correct algorithm based on Einstein notation. Obviously, the first option is impractical. Hence, we pursue the second option. Here, we show that using Ricci notation is not necessary for an efficient tensor calculus and develop an equally efficient method for the simpler Einstein notation. It turns out that turning to Einstein notation enables further improvements that lead to even better efficiency. The methods that are described in this paper for computing derivatives of matrix and tensor expressions have been implemented in the online tool www.MatrixCalculus.org.
Subject
Computational Theory and Mathematics,Information Systems,Algebra and Number Theory,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Basic Mathematics;A Guide to Applied Machine Learning for Biologists;2023