Distributed Spatiotemporal Gesture Recognition in Sensor Arrays

Author:

Hosseinmardi Homa1,Mysore Akshay1,Farrow Nicholas1,Correll Nikolaus1,Han Richard1

Affiliation:

1. University of Colorado Boulder, Boulder, CO

Abstract

We present algorithms for gesture recognition using in-network processing in distributed sensor arrays embedded within systems such as tactile input devices, sensing skins for robotic applications, and smart walls. We describe three distributed gesture-recognition algorithms that are designed to function on sensor arrays with minimal computational power, limited memory, limited bandwidth, and possibly unreliable communication. These constraints cause storage of gesture templates within the system and distributed consensus algorithms for recognizing gestures to be difficult. Building up on a chain vector encoding algorithm commonly used for gesture recognition on a central computer, we approach this problem by dividing the gesture dataset between nodes such that each node has access to the complete dataset via its neighbors. Nodes share gesture information among each other, then each node tries to identify the gesture. In order to distribute the computational load among all nodes, we also investigate an alternative algorithm, in which each node that detects a motion will apply a recognition algorithm to part of the input gesture, then share its data with all other motion nodes. Next, we show that a hybrid algorithm that distributes both computation and template storage can address trade-offs between memory and computational efficiency.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Software,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Survey on Terahertz Nanocommunication and Networking: A Top-Down Perspective;IEEE Journal on Selected Areas in Communications;2021-06

2. Materials That Make Robots Smart;Springer Proceedings in Advanced Robotics;2019-11-28

3. Materials that make robots smart;The International Journal of Robotics Research;2019-06-13

4. Shape-Changing Materials Using Variable Stiffness and Distributed Control;Soft Robotics;2018-12

5. An emergent group mind across a swarm of robots: Collective cognition and distributed sensing via a shared wireless neural network;The International Journal of Robotics Research;2018-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3