Processor scheduling in shared memory multiprocessors

Author:

Zahorjan John1,McCann Cathy1

Affiliation:

1. Department of Computer Science and Engineering, University of Washington, Seattle, WA

Abstract

Existing work indicates that the commonly used “single queue of runnable tasks” approach to scheduling shared memory multiprocessors can perform very poorly in a multiprogrammed parallel processing environment. A more promising approach is the class of “two-level schedulers” in which the operating system deals solely with allocating processors to jobs while the individual jobs themselves perform task dispatching on those processors. In this paper we compare two basic varieties of two-level schedulers. Those of the first type, static, make a single decision per job regarding the number of processors to allocate to it. Once the job has received its allocation, it is guaranteed to have exactly that number of processors available to it whenever it is active. The other class of two-level scheduler, dynamic, allows each job to acquire and release processors during its execution. By responding to the varying parallelism of the jobs, the dynamic scheduler promises higher processor utilizations at the cost of potentially greater scheduling overhead and more complicated application level task control policies. Our results, obtained via simulation, highlight the tradeoffs between the static and dynamic approaches. We investigate how the choice of policy is affected by the cost of switching a processor from one job to another. We show that for a wide range of plausible overhead values, dynamic scheduling is superior to static scheduling. Within the class of static schedulers, we show that, in most cases, a simple “run to completion” scheme is preferable to a round-robin approach. Finally, we investigate different techniques for tuning the allocation decisions required by the dynamic policies and quantify their effects on performance. We believe our results are directly applicable to many existing shared memory parallel computers, which for the most part currently employ a simple “single queue of tasks” extension of basic sequential machine schedulers. We plan to validate our results in future work through implementation and experimentation on such a system.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supporting Real-Time Jobs on the IBM Blue Gene/Q: Simulation-Based Study;Job Scheduling Strategies for Parallel Processing;2018

2. Parallel Models and Job Characterization for System Scheduling;Computational Science - ICCS 2001;2001

3. Execution of compute-intensive applications into parallel machines;Information Sciences;1997-03

4. Scheduler-conscious synchronization;ACM Transactions on Computer Systems;1997-02

5. Theory and practice in parallel job scheduling;Job Scheduling Strategies for Parallel Processing;1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3