Scheduler-conscious synchronization

Author:

Kontothanassis Leonidas I.1,Wisniewski Robert W.2,Scott Michael L.3

Affiliation:

1. DEC Cambridge Research Lab, Cambridge, MA

2. Silicon Graphics, Inc., Mountain View, CA

3. Univ. of Rochester, Rochester, NY

Abstract

Efficient synchronization is important for achieving good performance in parallel programs, especially on large-scale multiprocessors. Most synchronization algorithms have been designed to run on a dedicated machine, with one application process per processor, and can suffer serious performance degradation in the presence of multiprogramming. Problems arise when running processes block or, worse, busy-wait for action on the part of a process that the scheduler has chosen not to run. We show that these problems are particularly severe for scalable synchronization algorithms based on distributed data structures. We then describe and evaluate a set of algorithms that perform well in the presence of multiprogramming while maintaining good performance on dedicated machines. We consider both large and small machines, with a particular focus on scalability, and examine mutual-exclusion locks, reader-writer locks, and barriers. Our algorithms vary in the degree of support required from the kernel scheduler. We find that while it is possible to avoid pathological performance problems using previously proposed kernel mechanisms, a modest additional widening of the kernel/user interface can make scheduler-conscious synchronization algorithms significantly simpler and faster, with performance on dedicated machines comparable to that of scheduler-oblivious algorithms.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiprocessor Real-Time Locking Protocols;Handbook of Real-Time Computing;2022

2. Lock–Unlock;ACM Transactions on Computer Systems;2019-03-28

3. Multiprocessor Real-Time Locking Protocols;Handbook of Real-Time Computing;2019

4. Scheduler activations for interference-resilient SMP virtual machine scheduling;Proceedings of the 18th ACM/IFIP/USENIX Middleware Conference;2017-12-11

5. Malthusian Locks;Proceedings of the Twelfth European Conference on Computer Systems;2017-04-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3