On the use of greedy shapers in real-time embedded systems

Author:

Wandeler Ernesto1,Maxiaguine Alexander1,Thiele Lothar1

Affiliation:

1. ETH Zurich, Switzerland

Abstract

Traffic shaping is a well-known technique in the area of networking and is proven to reduce global buffer requirements and end-to-end delays in networked systems. Due to these properties, shapers also play an increasingly important role in the design of multiprocessor embedded systems that exhibit a considerable amount of on-chip traffic. Despite the growing importance of traffic shapping in this area, no methods exist for analyzing shapers in distributed embedded systems and for incorporating them into a system-level performance analysis. Until now it was not possible to determine the effect of shapers on end-to-end delay guarantees or buffer requirements in such systems. In this work, we present a method for analyzing greedy shapers, and we embed this analysis method into a well-established modular performance analysis framework for real-time embedded systems. The presented approach enables system-level performance analysis of complete systems with greedy shapers, and we prove its applicability by analyzing three case study systems.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Specification and Performance Indicators of AeroRing—A Multiple-Ring Ethernet Network for Avionics Embedded Systems;Sensors;2018-11-10

2. Adaptive Workload Management in Mixed-Criticality Systems;ACM Transactions on Embedded Computing Systems;2017-02-28

3. Transforming Real-Time Task Graphs to Improve Schedulability;2016 IEEE 22nd International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA);2016-08

4. Evaluation and Improvements of Runtime Monitoring Methods for Real-Time Event Streams;ACM Transactions on Embedded Computing Systems;2016-07-21

5. Reliability Enhancement for Hard Real-Time Communication in Industrial Packet-Switched Networks;Multiple Access Communications;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3