Evaluation and Improvements of Runtime Monitoring Methods for Real-Time Event Streams

Author:

Hu Biao1ORCID,Huang Kai2,Chen Gang1,Cheng Long1,Knoll Alois1

Affiliation:

1. Technische Universität München, Garching, Germany

2. Sun Yat-Sen University and Technische Universität München, Guangzhou, China

Abstract

Runtime monitoring is of great importance as a safeguard to guarantee the correctness of system runtime behaviors. Two state-of-the-art methods, dynamic counters and l -repetitive function, were recently developed to tackle the runtime monitoring for real-time systems. While both are reported to be efficient in monitoring arbitrary events, the monitoring performance between them has not yet been evaluated. This article evaluates both methods in depth, to identify their strengths and weaknesses. New methods are proposed to efficiently monitor the many-to-one connections that are abstracted as AND and OR components on multiple inputs. Representative scenarios are used as our case studies to quantitatively demonstrate the evaluations. Both methods are implemented in hardware F pga . The timing overhead and resource usages of implementing the two methods are evaluated.

Funder

China Scholarship Council, German BMBF project ECU

China SYSU “the Fundamental Research Funds for the Central Universities”

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3