A System-level Behavioral Detection Framework for Compromised CPS Devices

Author:

Babun Leonardo1ORCID,Aksu Hidayet1,Uluagac A. Selcuk1

Affiliation:

1. Florida International University, Miami, FL

Abstract

Cyber-Physical Systems (CPS) play a significant role in our critical infrastructure networks from power-distribution to utility networks. The emerging smart-grid concept is a compelling critical CPS infrastructure that relies on two-way communications between smart devices to increase efficiency, enhance reliability, and reduce costs. However, compromised devices in the smart grid poses several security challenges. Consequences of propagating fake data or stealing sensitive smart grid information via compromised devices are costly. Hence, early behavioral detection of compromised devices is critical for protecting the smart grid’s components and data. To address these concerns, in this article, we introduce a novel and configurable system-level framework to identify compromised smart grid devices. The framework combines system and function call tracing techniques with signal processing and statistical analysis to detect compromised devices based on their behavioral characteristics. We measure the efficacy of our framework with a realistic smart grid substation testbed that includes both resource-limited and resource-rich devices. In total, using our framework, we analyze six different types of compromised device scenarios with different resources and attack payloads. To the best of our knowledge, the proposed framework is the first in detecting compromised CPS smart grid devices with system and function-level call tracing techniques. The experimental results reveal an excellent rate for the detection of compromised devices. Specifically, performance metrics include accuracy values between 95% and 99% for the different attack scenarios. Finally, the performance analysis demonstrates that the use of the proposed framework has minimal overhead on the smart grid devices’ computing resources.

Funder

U.S. Department of Energy

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IMPROVING SECURITY OF IOT DEVICE COMMUNICATION USING MODIFIED HASHING SOLUTION;ShodhKosh: Journal of Visual and Performing Arts;2024-05-31

2. Modeling and risk assessment of cyber physical distribution system based on cyber attack;2024 IEEE 7th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC);2024-03-15

3. A Review of Smart Grid Anomaly Detection Approaches Pertaining to Artificial Intelligence;Applied Sciences;2024-01-31

4. IMPLEMENTING TOKEN-BASED AUTHENTICATION AND MODIFIED HASHING FOR IOT SECURITY;ShodhKosh: Journal of Visual and Performing Arts;2024-01-31

5. Unsupervised BLSTM-Based Electricity Theft Detection with Training Data Contaminated;ACM Transactions on Cyber-Physical Systems;2024-01-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3