Unsupervised BLSTM-Based Electricity Theft Detection with Training Data Contaminated

Author:

Liang Qiushi1ORCID,Zhao Shengjie2ORCID,Zhang Jiangfan3ORCID,Deng Hao1ORCID

Affiliation:

1. Tongji University, China

2. Tongji University, Engineering Research Center of Key Software Technologies for Smart City Perception and Planning, and Key Laboratory of Embedded System and Service Computing, Ministry of Education, China

3. Missouri University of Science and Technology, USA

Abstract

Electricity theft can cause economic damage and even increase the risk of outage. Recently, many methods have implemented electricity theft detection on smart meter data. However, how to conduct detection on the dataset without any label still remains challenging. In this article, we propose a novel unsupervised two-stage approach under the assumption that the training set is contaminated by attacks. Specifically, the method consists of two stages: (1) a Gaussian mixture model is employed to cluster consumption patterns with respect to different habits of electricity usage, and with the goal of improving the accuracy of the model in the posterior stage; (2) an attention-based bidirectional long short-term memory encoder-decoder scheme is employed to improve the robustness against the non-malicious changes in usage patterns leveraging the process of encoding and decoding. Quantifying the similarity of consumption patterns and reconstruction errors, the anomaly score is defined to improve detection performance. Experiments on a real dataset show that the proposed method outperforms the state-of-the-art unsupervised detectors.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Shanghai Municipal Science and Technology Major Project

Shanghai Science and Technology InnovationAction Plan

Natural Science Foundation of Shanghai

Fundamental Research Funds

Central Universities

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Human-Computer Interaction

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3