Mango Quality Grading using Deep Learning Technique: Perspectives from Agriculture and Food Industry

Author:

Bhole Varsha1,Kumar Arun1

Affiliation:

1. Sir Padampat Singhania University, Udaipur, India

Publisher

ACM

Reference39 articles.

1. Agricultural and Processed Food Products Export Development Authority (APEDA) Department of Commerce and Industry Union Budget 2018--19 [Online]. https://www.ibef.org/industry/agriculture-india.aspx. Agricultural and Processed Food Products Export Development Authority (APEDA) Department of Commerce and Industry Union Budget 2018--19 [Online]. https://www.ibef.org/industry/agriculture-india.aspx.

2. Computer Vision Based Fruit Grading System for Quality Evaluation of Tomato in Agriculture industry. Procedia Computer Science;Arakeri Megha P.;Elsevier,2016

3. Fusion of Color-Texture Features based Classification of Fruits using Digital and Thermal Images: A Step towards Improvement;Bhole Varsha;Grenze Int J Eng and Technol.,2020

4. A Texture-Based Analysis and Classification of Fruits Using Digital and Thermal Images

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Digital assessment of post-harvest Nendran banana for faster grading: CNN-based ripeness classification model;Postharvest Biology and Technology;2024-08

2. Augmented Evaluation of Mango Quality: MLP Model for Five-Class Severity Grading;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

3. Enhancing Mango Quality Evaluation: Utilizing an MLP Model for Five-Class Severity Grading;2024 International Conference on Innovations and Challenges in Emerging Technologies (ICICET);2024-06-07

4. Automated Classification of Indian Mango Varieties Using Machine Learning and MobileNet-v2 Deep Features;Traitement du Signal;2024-04-30

5. Deep Neural Network Based Yield Phenotyping Framework: Fruit Grading and Classification;2024 IEEE International Conference on Contemporary Computing and Communications (InC4);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3