V-Clip

Author:

Mirtich Brian1

Affiliation:

1. MERL, Cambridge, MA

Abstract

This article presents the Voronoi-clip, or V-Clip, collision detection alogrithm for polyhedral objects specified by a boundary representation. V-Clip tracks the closest pair of features between convex polyhedra, using an approach reminiscent of the Lin-Canny closest features algorithm. V-Clip is an improvement over the latter in several respects. Coding complexity is reduced, and robustness is significantly improved; the implementation has no numerical tolerances and does not exhibit cycling problems. The algorithm also handles penetrating polyhedra, and can therefore be used to detect collisions between nonvconvex polyhedra described as hierarchies of convex pieces. The article presents the theoretical principles of V-Clip, and gives a pseudocode description of the algorithm. It also documents various test that compare V-Clip, Lin-Canny, and the Enhanced GJK algorithm, a simplex-based algorithm that is widely used for the same application. The results show V-Clip to be a strong contender in this field, comparing favorably with the other algorithms in most of the tests, in term of both performance and robustness.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference18 articles.

1. Object representation by means of nonminimal division quadtrees and octrees

2. BARAFF D. 1992. Dynamic simulation of non-penetrating rigid bodies. Ph.D. Thesis Department of Computer Science Cornell University March. BARAFF D. 1992. Dynamic simulation of non-penetrating rigid bodies. Ph.D. Thesis Department of Computer Science Cornell University March.

3. Enhancing GJK: computing minimum and penetration distances between convex polyhedra

4. CHUNG K. 1996. An efficient collision detection algorithm for polytopes in virtual environments. Master's Thesis University of Hong Kong September. CHUNG K. 1996. An efficient collision detection algorithm for polytopes in virtual environments. Master's Thesis University of Hong Kong September.

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3