Zero-anaphora resolution by learning rich syntactic pattern features

Author:

Iida Ryu1,Inui Kentaro1,Matsumoto Yuji1

Affiliation:

1. Nara Institute of Science and Technology

Abstract

We approach the zero-anaphora resolution problem by decomposing it into intrasentential and intersentential zero-anaphora resolution tasks. For the former task, syntactic patterns of zeropronouns and their antecedents are useful clues. Taking Japanese as a target language, we empirically demonstrate that incorporating rich syntactic pattern features in a state-of-the-art learning-based anaphora resolution model dramatically improves the accuracy of intrasentential zero-anaphora, which consequently improves the overall performance of zero-anaphora resolution.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference48 articles.

1. Asahara M. and Matsumoto Y. 2003. IPADIC User Manual. Nara Institute of Science and Technology Japan. Asahara M. and Matsumoto Y. 2003. IPADIC User Manual. Nara Institute of Science and Technology Japan.

2. The Berkeley FrameNet Project

3. Baldwin B. 1995. Cogniac: A discourse processing engine. Ph.D. thesis Department of Computer and Information Sciences University of Pennsylvania. Baldwin B. 1995. Cogniac: A discourse processing engine. Ph.D. thesis Department of Computer and Information Sciences University of Pennsylvania.

4. Breiman L. 1999. Neural Computa. 11 7 1493--1518. 10.1162/089976699300016106 Breiman L. 1999. Neural Computa. 11 7 1493--1518. 10.1162/089976699300016106

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on semantic processing techniques;Information Fusion;2024-01

2. Computational Models of Anaphora;Annual Review of Linguistics;2023-01-17

3. Chinese Zero Pronoun Resolution;ACM Transactions on Asian and Low-Resource Language Information Processing;2020-01-31

4. Chinese Zero Pronoun Resolution;ACM Transactions on Asian and Low-Resource Language Information Processing;2020-01-09

5. Automatic Knowledge Acquisition for Case Alternation between the Passive/Causative and Active Voices;Journal of Natural Language Processing;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3