Computational Models of Anaphora

Author:

Poesio Massimo1,Yu Juntao2,Paun Silviu1,Aloraini Abdulrahman1,Lu Pengcheng1,Haber Janosch1,Cokal Derya3

Affiliation:

1. Computational Linguistics Lab, Queen Mary University of London, London, United Kingdom;

2. Natural Language and Information Processing Lab, University of Essex, Colchester, United Kingdom

3. Prominence in Language SFB, University of Cologne, Cologne, Germany

Abstract

Interpreting anaphoric references is a fundamental aspect of our language competence that has long attracted the attention of computational linguists. The appearance of ever-larger anaphorically annotated data sets covering more and more anaphoric phenomena in ever-greater detail has spurred the development of increasingly more sophisticated computational models; as a result, the most recent state-of-the-art neural models are able to achieve impressive performance by leveraging linguistic, lexical, discourse, and encyclopedic information. This article provides a thorough survey of anaphora resolution (coreference) throughout this development, reviewing the available data sets and covering both the preneural history of the field and—in more detail—current neural models, including research on less-studied aspects of anaphoric interpretation such as bridging reference resolution and discourse deixis interpretation.

Publisher

Annual Reviews

Subject

Linguistics and Language,Language and Linguistics

Reference153 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Detailed Study on Anaphora Resolution System for Asian Languages;SN Computer Science;2024-08-22

2. Resolving Chinese Anaphora with ChatGPT;2024 International Conference on Asian Language Processing (IALP);2024-08-04

3. A survey on semantic processing techniques;Information Fusion;2024-01

4. Anaphoric and Cataphoric Uses of the Definite Article “The” in Essays;2024

5. A Multi-task Learning Model for Gold-two-mention Co-reference Resolution;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3