Affiliation:
1. Ant Financial Services Group, China
2. National Key Lab for Novel Software Technology, Nanjing University, China
Abstract
Internet companies are facing the need for handling large-scale machine learning applications on a daily basis and distributed implementation of machine learning algorithms which can handle extra-large-scale tasks with great performance is widely needed. Deep forest is a recently proposed deep learning framework which uses tree ensembles as its building blocks and it has achieved highly competitive results on various domains of tasks. However, it has not been tested on extremely large-scale tasks. In this work, based on our parameter server system, we developed the distributed version of deep forest. To meet the need for real-world tasks, many improvements are introduced to the original deep forest model, including MART (Multiple Additive Regression Tree) as base learners for efficiency and effectiveness consideration, the cost-based method for handling prevalent class-imbalanced data, MART based feature selection for high dimension data, and different evaluation metrics for automatically determining the cascade level. We tested the deep forest model on an extra-large-scale task, i.e., automatic detection of cash-out fraud, with more than 100 million training samples. Experimental results showed that the deep forest model has the best performance according to the evaluation metrics from different perspectives even with very little effort for parameter tuning. This model can block fraud transactions in a large amount of money each day. Even compared with the best-deployed model, the deep forest model can additionally bring a significant decrease in economic loss each day.
Funder
National Science Foundation of China
National Key R8D Program of China
Collaborative Innovation Center of Novel Software Technology and Industrialization
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Theoretical Computer Science
Reference57 articles.
1. 2016. MIT Technology Review. Retireved from https://www.technologyreview.com/s/602850/big-data-game-changer-alibabas-double-11-event-raises-the-bar-for-online-sales/. 2016. MIT Technology Review. Retireved from https://www.technologyreview.com/s/602850/big-data-game-changer-alibabas-double-11-event-raises-the-bar-for-online-sales/.
2. Latent Dirichlet allocation;Blei David M.;Journal of Machine Learning Research 3,2003
3. From Ranknet to Lambdarank to Lambdamart: An overview;Burges Christopher J. C.;Learning,2010
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献