MGAD: Mutual Information and Graph Embedding Based Anomaly Detection in Multivariate Time Series

Author:

Huang Yuehua12ORCID,Liu Wenfen12,Li Song1,Guo Ying1,Chen Wen1

Affiliation:

1. School of Computer Science and Information Security & School of Software Engineering, Guilin University of Electronic Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Cryptography and Information Security, Guilin 541004, China

Abstract

Along with the popularity of mobile Internet and smart applications, more and more high-dimensional sensor data have appeared, and these high-dimensional sensor data have hidden information about system performance degradation, system failure, etc., and how to mine them to obtain such information is a very difficult problem. This challenge can be solved by anomaly detection techniques, which is an important field of research in data mining, especially in the domains of network security, credit card fraud detection, industrial fault identification, etc. However, there are many difficulties in anomaly detection in multivariate time-series data, including poor accuracy, fast data generation, lack of labeled data, and how to capture information between sensors. To address these issues, we present a mutual information and graph embedding based anomaly detection algorithm in multivariate time series, called MGAD (mutual information and graph embedding based anomaly detection). The MGAD algorithm consists of four steps: (1) Embedding of sensor data, where heterogeneous sensor data become different vectors in the same vector space; (2) Constructing a relationship graph between sensors using their mutual information about each other; (3) Learning the relationship graph between sensors using a graph attention mechanism, to predict the sensor data at the next moment; (4) Compare the predicted values with the real sensor data to detect potential outliers. Our contributions are as follows: (1) we propose an unsupervised outlier detection called MGAD with a high interpretability and accuracy; (2) massive experiments on benchmark datasets have demonstrated the superior performance of the MGAD algorithm, compared with state-of-the-art baselines in terms of ROC, F1, and AP.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Innovation Project of Guangxi Graduate Education

Publisher

MDPI AG

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3