Breaking through the normalization barrier: a self-interpreter for f-omega

Author:

Brown Matt1,Palsberg Jens1

Affiliation:

1. University of California at Los Angeles, USA

Abstract

According to conventional wisdom, a self-interpreter for a strongly normalizing lambda-calculus is impossible. We call this the normalization barrier. The normalization barrier stems from a theorem in computability theory that says that a total universal function for the total computable functions is impossible. In this paper we break through the normalization barrier and define a self-interpreter for System F_omega, a strongly normalizing lambda-calculus. After a careful analysis of the classical theorem, we show that static type checking in F_omega can exclude the proof's diagonalization gadget, leaving open the possibility for a self-interpreter. Along with the self-interpreter, we program four other operations in F_omega, including a continuation-passing style transformation. Our operations rely on a new approach to program representation that may be useful in theorem provers and compilers.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Reference39 articles.

1. Type theory in type theory using quotient inductive types

2. Theoretical Pearls: Self-interpretation in lambda calculus

3. Bruno Barras and Benjamin Werner. Coq in coq. Technical report 1997. Bruno Barras and Benjamin Werner. Coq in coq. Technical report 1997.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. “Upon This Quote I Will Build My Church Thesis”;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. The Concept of Proof in the Context of a Type-Theoretic Approach, III: Proofs as (Some) Types;Vestnik Tomskogo gosudarstvennogo universiteta. Filosofiya, sotsiologiya, politologiya;2020-10-01

3. DEGREES OF EXTENSIONALITY IN THE THEORY OF BOHM TREES AND SALLE'S CONJECTURE;LOG METH COMPUT SCI;2019

4. System F in Agda, for Fun and Profit;Lecture Notes in Computer Science;2019

5. Incorporating quotation and evaluation into Church's type theory;Information and Computation;2018-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3