Theoretical Pearls: Self-interpretation in lambda calculus

Author:

Barendregt Henk

Abstract

Programming languages which are capable of interpreting themselves have been fascinating computer scientists. Indeed, if this is possible then a ‘strange loop’ (in the sense of Hofstadter, 1979) is involved. Nevertheless, the phenomenon is a direct consequence of the existence of universal languages. Indeed, if all computable functions can be captured by a language, then so can the particular job of interpreting the code of a program of that language. Self-interpretation will be shown here to be possible in lambda calculus.The set of λ-terms, notation Λ, is defined by the following abstract syntaxwhereis the set {v, v′, v″, v′″,…} of variables. Arbitrary variables are usually denoted by x, y,z,… and λ-terms by M,N,L,…. A redex is a λ-term of the formthat is, the result of substituting N for (the free occurrences of) x in M. Stylistically, it can be said that λ-terms represent functional programs including their input. A reduction machine executes such terms by trying to reduce them to normal form; that is, redexes are continuously replaced by their contracta until hopefully no more redexes are present. If such a normal form can be reached, then this is the output of the functional program; otherwise, the program diverges.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference2 articles.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intensional computation with higher-order functions;Theoretical Computer Science;2019-05

2. A simpler lambda calculus;Proceedings of the 2019 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation - PEPM 2019;2019

3. Self-Quotation in a Typed, Intensional Lambda-Calculus;Electronic Notes in Theoretical Computer Science;2018-04

4. Recursive programs in normal form (short paper);Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation;2017-12-25

5. On the Semantics of Intensionality;Lecture Notes in Computer Science;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3