Affiliation:
1. University of Science and Technology of China, Hefei, China
2. Alibaba Youku Cognitive and Intelligent Lab, Beijing, China
Abstract
As a crucial task for video analysis, social relation recognition for characters not only provides semantically rich description of video content but also supports intelligent applications, e.g., video retrieval and visual question answering. Unfortunately, due to the semantic gap between visual and semantic features, traditional solutions may fail to reveal the accurate relations among characters. At the same time, the development of social media platforms has now promoted the emergence of crowdsourced comments, which may enhance the recognition task with semantic and descriptive cues. To that end, in this article, we propose a novel multimodal-based solution to deal with the character relation recognition task. Specifically, we capture the target character pairs via a search module and then design a multistream architecture for jointly embedding the visual and textual information, in which feature fusion and attention mechanism are adapted for better integrating the multimodal inputs. Finally, supervised learning is applied to classify character relations. Experiments on real-world data sets validate that our solution outperforms several competitive baselines.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献