Cross-modality Multiple Relations Learning for Knowledge-based Visual Question Answering

Author:

Wang Yan1ORCID,Li Peize2ORCID,Si Qingyi3ORCID,Zhang Hanwen3ORCID,Zang Wenyu4ORCID,Lin Zheng3ORCID,Fu Peng3ORCID

Affiliation:

1. School of Artificial Intelligence, and Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, China

2. School of Artificial Intelligence, Jilin University, China

3. Institute of Information Engineering, Chinese Academy of Sciences, and School of Cyber Security, University of Chinese Academy of Sciences, China

4. China Electronics Corporation, China

Abstract

Knowledge-based visual question answering not only needs to answer the questions based on images but also incorporates external knowledge to study reasoning in the joint space of vision and language. To bridge the gap between visual content and semantic cues, it is important to capture the question-related and semantics-rich vision-language connections. Most existing solutions model simple intra-modality relation or represent cross-modality relation using a single vector, which makes it difficult to effectively model complex connections between visual features and question features. Thus, we propose a cross-modality multiple relations learning model, aiming to better enrich cross-modality representations and construct advanced multi-modality knowledge triplets. First, we design a simple yet effective method to generate multiple relations that represent the rich cross-modality relations. The various cross-modality relations link the textual question to the related visual objects. These multi-modality triplets efficiently align the visual objects and corresponding textual answers. Second, to encourage multiple relations to better align with different semantic relations, we further formulate a novel global-local loss. The global loss enables the visual objects and corresponding textual answers close to each other through cross-modality relations in the vision-language space, and the local loss better preserves semantic diversity among multiple relations. Experimental results on the Outside Knowledge VQA and Knowledge-Routed Visual Question Reasoning datasets demonstrate that our model outperforms the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Development Project of Jilin Province of China

National Key R&D Program

Jilin Provincial Key Laboratory of Big Data Intelligent Cognition

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3