Selecting vantage objects for similarity indexing

Author:

Van Leuken Reinier H.1,Veltkamp Remco C.1

Affiliation:

1. Utrecht University, Utrecht, The Netherlands

Abstract

Indexing has become a key element in the pipeline of a multimedia retrieval system, due to continuous increases in database size, data complexity, and complexity of similarity measures. The primary goal of any indexing algorithm is to overcome high computational costs involved with comparing the query to every object in the database. This is achieved by efficient pruning in order to select only a small set of candidate matches. Vantage indexing is an indexing technique that belongs to the category of embedding or mapping approaches, because it maps a dissimilarity space onto a vector space such that traditional access methods can be used for querying. Each object is represented by a vector of dissimilarities to a small set of m reference objects, called vantage objects. Querying takes place within this vector space. The retrieval performance of a system based on this technique can be improved significantly through a proper choice of vantage objects. We propose a new technique for selecting vantage objects that addresses the retrieval performance directly, and present extensive experimental results based on three data sets of different size and modality, including a comparison with other selection strategies. The results clearly demonstrate both the efficacy and scalability of the proposed approach.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DIDS: Double Indices and Double Summarizations for Fast Similarity Search;Proceedings of the VLDB Endowment;2024-05

2. Indexing Metric Spaces for Exact Similarity Search;ACM Computing Surveys;2022-12-07

3. Entity Resolution in Dissimilarity Spaces;25th Pan-Hellenic Conference on Informatics;2021-11-26

4. Object recognition based on critical nodes;Pattern Analysis and Applications;2019-01-09

5. A survey of image data indexing techniques;Artificial Intelligence Review;2018-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3