Labeling Privacy Protection SVM Using Privileged Information for COVID-19 Diagnosis

Author:

Ni Tongguang1ORCID,Zhu Jiaqun1ORCID,Qu Jia1ORCID,Xue Jing2ORCID

Affiliation:

1. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China

2. Department of Nephrology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China

Abstract

Edge/fog computing works at the local area network level or devices connected to the sensor or the gateway close to the sensor. These nodes are located in different degrees of proximity to the user, while the data processing and storage are distributed among multiple nodes. In healthcare applications in the Internet of things, when data is transmitted through insecure channels, its privacy and security are the main issues. In recent years, learning from label proportion methods, represented by inverse calibration (InvCal) method, have tried to predict the class label based on class label proportions in certain groups. For privacy protection, the class label of the sample is often sensitive and invisible. As a compromise, only the proportion of class labels in certain groups can be used in these methods. However, due to their weak labeling scheme, their classification performance is often unsatisfactory. In this article, a labeling privacy protection support vector machine using privileged information, called LPP-SVM-PI, is proposed to promote the accuracy of the classifier in infectious disease diagnosis. Based on the framework of the InvCal method, besides using the proportion information of the class label, the idea of learning using privileged information is also introduced to capture the additional information of groups. The slack variables in LPP-SVM-PI are represented as correcting function and projected into the correcting space so that the hidden information of training samples in groups is captured by relaxing the constraints of the classification model. The solution of LPP-SVM-PI can be transformed into a classic quadratic programming problem. The experimental dataset is collected from the Coronavirus disease 2019 (COVID-19) transcription polymerase chain reaction at Hospital Israelita Albert Einstein in Brazil. In the experiment, LPP-SVM-PI is efficiently applied for COVID-19 diagnosis.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3