Cloud, Fog, or Mist in IoT? That Is the Question

Author:

Vasconcelos D. R.1ORCID,Andrade R. M. C.2ORCID,Severino V.2ORCID,Souza J. N. De2ORCID

Affiliation:

1. Federal Institute of Ceará/Federal University of Ceará, Brazil - zip

2. Federal University of Ceará, Brazil - zip

Abstract

Internet of Things (IoT) has been commercially explored as Platforms as a Services (PaaS). The standard solution for this kind of service is to combine the Cloud computing infrastructure with IoT software, services, and protocols also known as CoT (Cloud of Things). However, the use of CoT in latency-sensitive applications has been shown to be unfeasible due to the inherent latency of cloud computing services. One proposal to solve this problem is the use of the computational resources available at the edge of the network, which is called Fog computing. Fog computing solves the problem of latency but adds complexity to the use of these resources due to the dynamism and heterogeneity of the IoT. An even more accentuated form of fog computing is Mist computing, where the use of the computational resources is limited to the close neighborhood of the client device. The decision of what computing infrastructure (Fog, Mist, or Cloud computing) is the best to provide computational resources is not always simple, especially in cases where latency requirements should be met by CoT. This work proposes an algorithm for selecting the best physical infrastructure to use the computational resource (Fog, Mist, or Cloud computing) based on cost, bandwidth, and latency criteria defined by the client device, resource availability, and topology of the network. The article also introduces the concept of feasible Fog that limits the growth of device search time in the neighborhood of the client device. Simulation results suggest the algorithm’s choice adequately attends the client’s device requirements and that the proposed method can be used in IoT environment located on the edge of the network.

Funder

CNPq, Brazil

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3