Grouping Time Series for Efficient Columnar Storage

Author:

Fang Chenguang1ORCID,Song Shaoxu1ORCID,Guan Haoquan1ORCID,Huang Xiangdong1ORCID,Wang Chen1ORCID,Wang Jianmin1ORCID

Affiliation:

1. Tsinghua University, China, Beijing, China

Abstract

Columnar storage is now an industry standard design in most open-source or commercial time series database products, making them HTAP systems. The time column of a time series serves as the key for identifying the other value column, namely single-column storage scheme. When multiple time series share a similar set of timestamps, very likely in a module of multiple sensors, it is natural to group them together, i.e., one time column identifies multiple value columns in a single-group storage scheme. While multiple value columns sharing the same time column reduce the space cost of repeating timestamps, it may introduce extra space cost for recording null values. The reason is that time series may not be exactly aligned on each timestamp, owing to missing values, distinct data collection frequencies, unsynchronized clocks and so on. The columngroups storage scheme is thus to divide columns into multiple groups, within which the value columns share the same time column. Unfortunately, the problem of finding the optimal column groups for the minimum space cost is highly challenging, NP-hard according to our analysis. Thereby, we propose a heuristic algorithm for automatically grouping time series for efficient columnar storage. The column groups storage has been deployed in Apache IoTDB, an open-source time series database. The extensive performance analysis, over real-world data from our industrial partners, demonstrates that the proposed column groups achieve near optimal storage, more concise than the storage of single-column or single-group schemes. Interestingly, both the flushing and querying time costs of column groups are comparable to those of single-column or singlegroup, i.e., without incurring extra time cost.

Funder

National Key Research and Development Plan

Publisher

Association for Computing Machinery (ACM)

Reference36 articles.

1. Apache HBase. https://hbase.apache.org/. Apache HBase. https://hbase.apache.org/.

2. Apache HBase Implementation. https://github.com/iotdbColumnGroup/HBase. Apache HBase Implementation. https://github.com/iotdbColumnGroup/HBase.

3. Apache IoTDB. http://iotdb.apache.org. Apache IoTDB. http://iotdb.apache.org.

4. Appendix. https://iotdbcolumngroup.github.io/iotdbColumnGroup/appendix.pdf. Appendix. https://iotdbcolumngroup.github.io/iotdbColumnGroup/appendix.pdf.

5. Code and Data. https://github.com/iotdbColumnGroup/iotdbColumnGroup. Code and Data. https://github.com/iotdbColumnGroup/iotdbColumnGroup.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3