Apache IoTDB: A Time Series Database for IoT Applications

Author:

Wang Chen1ORCID,Qiao Jialin2ORCID,Huang Xiangdong2ORCID,Song Shaoxu1ORCID,Hou Haonan2ORCID,Jiang Tian1ORCID,Rui Lei1ORCID,Wang Jianmin1ORCID,Sun Jiaguang1ORCID

Affiliation:

1. Tsinghua University, Beijing, China

2. Timecho Ltd., Beijing, China

Abstract

A typical industrial scenario encounters thousands of devices with millions of sensors, consistently generating billions of data points. It poses new requirements of time series data management, not well addressed in existing solutions, including (1) device-defined ever-evolving schema, (2) mostly periodical data collection, (3) strongly correlated series, (4) variously delayed data arrival, and (5) highly concurrent data ingestion. In this paper, we present a time series database management system, Apache IoTDB. It consists of (i) a time series native file format, TsFile, with specially designed data encoding, and (ii) an IoTDB engine for efficiently handling delayed data arrivals and processing queries. The system achieves a throughput of 10 million inserted values per second. Queries such as 1-day data selection of 0.1 million points and 3-year data aggregation over 10 million points can be processed in 100 ms. Comparisons with InfluxDB, TimescaleDB, KairosDB, Parquet and ORC over real world data loads demonstrate the superiority of IoTDB and TsFile.

Funder

National Key Research and Development Plan

Publisher

Association for Computing Machinery (ACM)

Reference63 articles.

1. Beringei: A high-performance time series storage engine | engineering blog | facebook code. Beringei: A high-performance time series storage engine | engineering blog | facebook code.

2. Monarch

3. M. P. Andersen and D. E. Culler . Btrdb: Optimizing storage system design for timeseries processing. In A. D. Brown and F. I. Popovici, editors , 14th USENIX Conference on File and Storage Technologies, FAST 2016 , Santa Clara, CA, USA, February 22--25 , 2016 , pages 39 -- 52 . USENIX Association, 2016. M. P. Andersen and D. E. Culler. Btrdb: Optimizing storage system design for timeseries processing. In A. D. Brown and F. I. Popovici, editors, 14th USENIX Conference on File and Storage Technologies, FAST 2016, Santa Clara, CA, USA, February 22--25, 2016, pages 39--52. USENIX Association, 2016.

4. Apache Hadoop. https://hadoop.apache.org/. Apache Hadoop. https://hadoop.apache.org/.

5. Apache HBase. Apache hbase home page. http://hbase.apache.org/. Apache HBase. Apache hbase home page. http://hbase.apache.org/.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3