Riso-Tree: An Efficient and Scalable Index for Spatial Entities in Graph Database Management Systems

Author:

Sun Yuhan1,Sarwat Mohamed1

Affiliation:

1. Arizona State University, United States, Tempe, AZ

Abstract

With the ubiquity of spatial data, vertexes or edges in graphs can possess spatial location attributes side by side with other non-spatial attributes. For instance, as of June 2018, the Wikidata knowledge graph contains 48,547,142 data items (i.e., vertexes) and 13% of them have spatial location attributes. The article proposes Riso-Tree, a generic efficient and scalable indexing framework for spatial entities in graph database management systems. Riso-Tree enables the fast execution of graph queries that involve different types of spatial predicates (GraSp queries). The proposed framework augments the classic R-Tree structure with pre-materialized sub-graph entries. The pruning power of R-Tree is enhanced with the sub-graph information. Riso-Tree partitions the graph into sub-graphs based on their connectivity to the spatial sub-regions. The proposed index allows for the fast execution of GraSp queries by efficiently pruning the traversed vertexes/edges based upon the materialized sub-graph information. The experiments show that the proposed Riso-Tree achieves up to two orders of magnitude faster execution time than its counterparts when executing GraSp queries on real graphs (e.g., Wikidata). The strategy of limiting the size of each sub-graph entry ( PN max ) is proposed to reduce the storage overhead of Riso-Tree. The strategy can save up to around 70% storage without harming the query performance according to the experiments. Another strategy is proposed to ensure the performance of the index maintenance (Irrelevant Vertexes Skipping). The experiments show that the strategy can improve performance, especially for slow updates. It proves that Riso-Tree is useful for applications that need to support frequent updates.

Funder

National Science Foundation

Salt River Project Agricultural Improvement and Power District

OD-ARMY Training and Doctrine Command

Publisher

Association for Computing Machinery (ACM)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Computer Science Applications,Modeling and Simulation,Information Systems,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Generating Realistic Geosocial Networks;Proceedings of the 7th ACM SIGSPATIAL Workshop on Location-based Recommendations, Geosocial Networks and Geoadvertising;2023-11-13

2. Mining Top-k Frequent Patterns in Large Geosocial Networks: A Mnie-Based Extension Approach;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3