Affiliation:
1. University of Maryland, College Park, MD
2. Towson University, Towson, MD
Abstract
Though extensions to the relational data model have been proposed in order to handle probabilistic information, there has been very little work to date on handling aggregate operators in such databases. In this article, we present a very general notion of an aggregate operator and show how classical aggregation operators (such as COUNT, SUM, etc.) as well as statistical operators (such as percentiles, variance, etc.) are special cases of this general definition. We devise a formal linear programming based semantics for computing aggregates over probabilistic DBMSs, develop algorithms that satisfy this semantics, analyze their complexity, and introduce several families of approximation algorithms that run in polynomial time. We implemented all of these algorithms and tested them on a large set of data to help determine when each one is preferable.
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Hardware and Architecture,Information Systems,Control and Systems Engineering,Software
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献